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Lattice kinetic equations for simulating incompressible magnetohydrodynamics in
two or three dimensions are constructed. The fluid is simulated via a conventional low
Mach number lattice Boltzmann scheme, modified to include the Lorentz force due
to the magnetic field. The magnetic field is represented by a separate vector-valued
magnetic distribution function which obeys a vector Boltzmann–BGK equation. The
two distribution functions are only coupled via the macroscopic density, momentum,
and magnetic field evaluated at lattice points. This allows a reduced lattice to be used
for the magnetic distribution function, with a corresponding saving in storage, which
becomes comparable to that for the scalar hydrodynamic distribution function. The
magnetic diffusivity may be adjusted independently of the fluid viscosity, unlike an
earlier formulation. Numerical experiments with Hartmann flow, the Orszag–Tang
vortex, and the doubly periodic coalescence instability compare favorably with results
obtained using a spectral method, and with previously published results. The scheme
preserved a consistent approximation to the divergence-free condition ∇ · B = 0 to
round-off error. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

Methods based on lattice Boltzmann equations (LBE) are a promising alternative to
conventional numerical methods for simulating fluid flows [17, 38]. Using a velocity-space
truncation of the Boltzmann equation (2) from the kinetic theory of gases [11, 12, 32, 40],
lattice Boltzmann methods lead to linear, constant coefficient hyperbolic systems with
nonlinear source terms. Such systems are straightforward to implement numerically and
have proved especially effective for simulating flows in complicated geometries, and for
exploiting massively parallel computer architectures. However, there have been very few
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previous applications to magnetohydrodynamics (MHD) [16, 54, 69]. Our approach is based
upon work by Bouchut [7] that introduced a vector-valued distribution function in place of
the scalar probability distribution function used in the kinetic theory of gases. At this point
the connection with the Boltzmann equation becomes rather tenuous, so we propose the
description “lattice kinetic scheme.”

The two-dimensional incompressible “reduced” magnetohydrodynamic equations suffice
to describe many processes occurring in three-dimensional compressible magnetised plas-
mas [4, 27, 50, 51]. Experiments in plasma physics are often conducted in a toroidal geom-
etry, with the magnetic field predominantly in the azimuthal direction. A two-dimensional
approximation may be justified on the assumption that the fields are slowly varying func-
tions of the azimuthal coordinate, z say, so that ∂z � ∂x , ∂y . The magnetic pressure due to
the field component in the toroidal direction is often large enough, Bz � Bx , By , to justify
an incompressibility approximation in the perpendicular xy-plane. A similar geometrical
argument may be used to justify the reduced MHD equations in studies of solar coronal
heating [27, 51]. We construct a numerical scheme based on kinetic theory that simulates the
two- or three-dimensional compressible magnetohydrodynamic (MHD) equations at small
but finite Mach numbers, for which solutions approximate solutions of the incompressible
MHD equations.

The lattice Boltzmann approach to hydrodynamics leads to intrinsically multidimensional
numerical schemes through the use of multidimensional lattices and quadratures to main-
tain isotropy of the derived equations. By contrast, the extension to multiple dimensions
of conventional upwind schemes originally developed in one spatial dimension typically
requires additional work [31, 46, 47]. This problem is particularly acute in magnetohy-
drodynamics owing to the constraint ∇ · B = 0. This expresses the absence of magnetic
monopoles, which have never been observed experimentally. Since the magnetic induction
equation (5) implies ∂t∇ · B = 0, this constraint is often imposed as an initial condition,
one that is preserved by the evolution of B. Unfortunately, this constraint makes the one-
dimensional situation degenerate [48, 63]. If B is a function of one coordinate x only, then
the constraint ∇ · B = 0 simplifies to ∂x Bx = 0, forcing the x-component Bx of the magnetic
field to be constant. Thus the solution of the compressible MHD Riemann problem contains
only seven waves for a system of eight variables, so a separate step is normally required to
evolve the Bx component [9, 73]. Conversely, if a multidimensional MHD system is solved
by dimensional splitting, or even just uses one-dimensional Riemann problems to compute
upwind fluxes, the initial data for these one-dimensional problems will generally not satisfy
∇ · B = 0 [63]. Numerous variants of these two approaches were compared recently by Tóth
[71]. Our scheme avoids all these considerations by being genuinely multidimensional and
preserves a consistent discrete approximation to ∇ · B = 0 to machine round-off error.

Kinetic formulations of the Euler or Navier–Stokes equations introduce a distribution
function f (x, �, t) that denotes the density of particles at position x and time t moving
with microscopic velocity � [11, 12, 32, 40]. The macroscopic quantities such as density,
� , momentum, �u, and momentum flux or stress, Π [45], each of which depends on x and t
only, are obtained from moments of the distribution function with respect to the microscopic
velocity, �,

� =
∫

f (x, �, t) d�, �u =
∫

� f (x, �, t) d�, Π =
∫

�� f (x, �, t) d�, (1)
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where the integrals are taken over all of velocity space. In the absence of external forces,
such as gravity, the distribution function f evolves according to the Boltzmann equation

∂t f + � · ∇ f = C( f ), (2)

where the term C( f ) describes collisions between particles. Much of the computational
interest in kinetic formulations is due to the linearity of the differential operator on the left
hand side of (2). Nonlinearity is confined to the collision term, which is generally both
nonlinear and nonlocal in that it involves integrals with respect to �. The Bhatnagar–Gross–
Krook (BGK) approximation [3] is often used for the collision term, in which f relaxes
towards an equilibrium distribution f (0) with a single relaxation time � ,

∂t f + � · ∇ f = − 1

�

(
f − f (0)

)
. (3)

This approximation is sufficient to recover the Navier–Stokes equations, although with the
limitation that the thermal conductivity � is given by � = (5/2)�, rather than � = (15/4)�,
as obtained from Boltzmann’s binary collision operator [11].

By integrating (2) over �, and by multiplying (2) by � and integrating, Eq. (2) implies
macroscopic mass and momentum conservation equations in the form

∂t � + ∇ · (�u) = 0, ∂t (�u) + ∇ · Π = 0. (4)

The right hand sides, which are the zeroth and first moments of the collision term,
∫

C( f ) d�

and
∫

�C( f ) d�, respectively, vanish because collisions between particles conserve mass
and momentum. Although these continuum equations lack significant content until we can
express the momentum flux, Π, in terms of the macroscopic variables, their structure shows
that the time derivative of momentum, which is a vector quantity, must be the divergence
of a symmetric rank-2 tensor, since Π is symmetric by construction in (1). In heuristic
constructions of continuum mechanics the symmetry of the stress tensor is a consequence of
local angular momentum conservation, since any asymmetry of Π would induce arbitrarily
large angular accelerations of small material volumes [45].

Conversely, the time evolution of a magnetic field B is determined by the associated
electric field E through the induction equation [4, 67]

∂B
∂t

+ ∇ × E = 0, (5)

which is one of Maxwell’s equations. This may be rewritten in a divergence form resem-
bling (4),

∂B
∂t

+ ∇ · Λ = 0, (6)

if the electric field is represented as an antisymmetric rank-2 tensor Λ with components

��� = −���	 E	 , (7)

where ���	 is the alternating Levi–Civita tensor. We follow Chen and Doolen [17] in using
Greek indices for vector components, reserving Roman indices for labelling discrete lattice
vectors.
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Comparing (6) with (4), the asymmetry, in fact antisymmetry, of Λ makes it impossible to
construct a kinetic formulation for the induction equation analogous to that for the Navier–
Stokes momentum equation, in which the macroscopic magnetic field is the first moment
of some scalar distribution function. Instead, following Croisille et al. [21] and Bouchut
[7], we introduce a vector-valued distribution g(x, �, t) for the magnetic field such that

B(x, t) =
∫

g(x, �, t) d�. (8)

We propose that g(x, �, t) should satisfy a vector Boltzmann–BGK equation of the kind
considered by Bouchut [7],

∂t g + � · ∇g = − 1

�m

(
g − g(0)

)
, (9)

so that each component of g satisfies an equation of the form (3). The use of a separate
relaxation time �m �= � will allow the resistivity, the inverse of the electrical conductivity,
to be adjusted independently of the fluid viscosity determined by � .

Bouchut’s goal was to construct continuum kinetic formulations for arbitrary systems
of hyperbolic conservation laws satisfying certain entropy properties by introducing a
distribution function with one component for each conserved variable in the original hyper-
bolic system [7]. More generally, Jin and Xin [44] proposed a scheme for solving non-
linear systems of hyperbolic conservation laws by embedding them in a larger linear hyper-
bolic system of the form (9) with an entropy-respecting relaxation term on the right hand
side. The resulting linear system may be solved readily using a conventional upwind scheme
[31, 46, 48]. This approach, based on theoretical work by Chen et al. [13], was recently rein-
terpreted by LeVeque and Pelanti [49] as defining a class of approximate Riemann solvers
for the original hyperbolic system. However, in this paper we are a little more ambitious.
Entropy-respecting hyperbolic schemes aim at best to capture the correct limiting solution
of some hyperbolic system, as the diffusion coefficients tend to zero [31, 46]. By contrast,
we show below that our lattice kinetic scheme captures the correct viscous and resistive
transport behavior for finite values of the diffusion coefficients � and 
 .

A vector-valued distribution function was used by Croisille et al. [21] in their “semiempi-
rical” kinetic formulation of the ideal (
 = � = 0) MHD equations. They used the alternative
BGK-like evolution equation

∂t g − ∇ × (� × g) = − 1

�m

(
g − g(0)

)
(10)

to construct upwind fluxes as part of a finite-volume method for solving the compressible
ideal MHD equations. The explicit curl in (10) is helpful for enforcing the divergence-free
constraint ∇ · B = 0. Unfortunately it is not possible to solve (10) by integrating ordinary
differential equations along characteristics, since the three components of g are coupled
via the �∇ · g term in ∇ × (� × g) = � · ∇g − �∇ · g, so it is not suitable for a lattice
Boltzmann method (see Section 7).

While lattice Boltzmann equations were originally constructed empirically [55] as ex-
tensions of lattice gas automata (LGA) [30] to continuous distribution functions, it was
eventually realised that the most common isothermal LBE is equivalent to a systematic mo-
ment truncation of the continuum Boltzmann equation in velocity space [35, 36, 66]. This
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approach is useful for ensuring that the LBE reproduces the correct continuum behavior, but
it suffers from the drawback that constraints on the moments of the distribution functions
appearing in the continuum equations generally do not suffice to determine a unique set of
equilibria [23]. In particular, the fact that a proposed LBE reproduces the desired continuum
behavior for slowly varying solutions does not prevent it from being unstable to grid-scale
instabilities [23].

Chen et al. [16] proposed a lattice Boltzmann scheme for MHD using a set of distribution
functions fi j with two suffixes, corresponding to separate microscopic velocities for u and
B. The macroscopic velocity and magnetic fields were reconstructed from moments with
respect to i and j , respectively. This formulation arose as a continuum generalisation of
the stochastic bidirectional streaming previously employed in lattice gas MHD cellular
automata [15, 18]. However, such a large collection of distribution functions requires an
unreasonably large number of variables per lattice point, namely 36 for the minimal two-
dimensional hexagonal lattice, and several hundred for a three-dimensional implementation.
Martı́nez et al. [54] reduced the number of variables to only twice that required for a Navier–
Stokes simulation by using a sparse set of distribution functions with fi j identically zero for
most combinations of i and j , but did not address the more serious drawback that the use
of a single set of distribution functions for both B and u implies a fixed algebraic relation
between the viscosity � and resistivity 
 . In particular, they were unable to achieve high
fluid Reynolds numbers with their scheme.

Another approach for two-dimensional MHD [57, 69] uses the magnetic vector poten-
tial, or flux function, formulation (see Section 9). Succi et al. [69] observed that in the
incompressible Navier–Stokes equation for a three-dimensional velocity field which is a
function of only two coordinates, such as (ux , uy, uz)(x, y), the third velocity component
uz is advected like a passive scalar. Thus they could simulate two-dimensional MHD by
identifying uz with a magnetic flux function (see Section 9), and modifying the equilibrium
distribution to include the Lorentz force. However this approach does not extend into three
dimensions and is also limited by the requirement that the viscosity � and resistivity 
 be
equal.

2. MAGNETOHYDRODYNAMIC EQUATIONS

The incompressible magnetohydrodynamic (MHD) equations are [4, 67]

∂t u + u · ∇u = −�−1
0 ∇ p + �−1

0 J × B + �∇2u, (11a)

∂t B = −∇ × E = ∇ × (u × B − 
∇ × B), (11b)

subject to the two divergence-free constraints ∇ · u = 0 and ∇ · B = 0. The electric field
E has been eliminated using Ohm’s law in the usual resistive MHD approximation, E +
u × B = 
∇ × B [4, 67]. The magnetic permittivity �0 has been absorbed by replacing
B with B�

−1/2
0 , but a reference density, �0, has been retained to aid comparison with

the compressible magnetohydrodynamic equations appearing below. Thus some of our
formulae, notably those for Hartmann flow in Section 8, differ from those of Martı́nez
et al. [54], who replaced B with the Alfvén velocity B/(�0�0)

1/2 to absorb the �−1
0 term

in front of J × B in (11a) as well. The two diffusion coefficients � and 
 are the kinematic
viscosity and magnetic resistivity, respectively. The relative importance of the viscous and
resistive terms in the momentum and induction equations, respectively, is denoted by two
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dimensionless parameters, the Reynolds number Re = U L/� and the magnetic Reynolds
number Rm = U L/
 , where U and L are velocity and length scales.

The divergence-free condition in the magnetic induction equation (11b) differs in char-
acter to that in the Navier–Stokes equation (11a). Since the divergence of the right hand side
−∇ × E vanishes identically, ∂t∇ · B = 0. The constraint ∇ · B = 0 may thus be thought
of as an initial condition, one that is preserved by the evolution equation (11b). By contrast,
the divergence-free condition ∇ · u = 0 must be explicitly enforced by the pressure gradient
in the Navier–Stokes equation (11a), since the nonlinear terms u · ∇u and J × B generally
have nonzero divergence. We show in Section 6 that our scheme preserves a consistent
approximation to ∇ · B = 0.

We actually simulate the compressible Navier–Stokes equations, in which the nonlocal
Poisson equation for the pressure, obtained by taking the divergence of equation (11a), is
replaced by the local propagation of sound waves at a finite speed, cs. Solutions of the
compressible system approximate solutions of the incompressible system when the sound
speed cs is much larger than the fluid speed u, which is the limit of small Mach number,
Ma = |u|/cs → 0. Thus we replace the incompressible MHD system (11a) and (11b) with
the compressible system

∂t � + ∇ · (�u) = 0, (12a)

∂t (�u) + ∇ · (pl + �uu) = J × B + ∇ · (2��S), (12b)

∂t B + ∇ · (uB − Bu) = 
∇2B. (12c)

The viscous stress has been written as a scalar multiple of the strain tensor S�� = 1
2 (∂�u� +

∂�u�). This differs from the usual compressible Navier–Stokes viscous stress because the
strain tensor is not traceless, so the simulated fluid possesses bulk viscosity as well as shear
viscosity. However, this is the form that emerges from an isothermal lattice Boltzmann
equation (see [25] and (25) below), and the missing isotropic term proportional to ∇ · u
becomes negligible compared with the other terms in the small Mach number limit. Sim-
ilarly, the resistive term −∇ × (
∇ × B) has been rewritten as 
∇2B in (12b), using the
assumptions that 
 is constant and that ∇ · B = 0.

We construct lattice kinetic equations that simulate the system (12a)–(12c) in the small
Mach number limit. For scaling purposes, we assume that the two nonlinear terms �u2 and B2

are comparable (see Section 4), or in other words that the fluid velocity u is comparable with
the Alfvén velocity uA = B�−1/2 (recall that we have absorbed a factor of �

−1/2
0 into B). In

the small Mach number limit, temperature and density variations are both O(Ma2). It is thus
common to adopt the isothermal equation of state p = c2

s � , with constant sound speed cs,
when devising lattice Boltzmann equations [17, 64]. We adopt scalings in which the density
and sound speed cs are O(1), and the fluid velocity and magnetic field are both O(Ma).
The small Mach number limit allows the neglect of various small terms associated with
higher moments of the two distribution functions f and g. In other words, f and g may be
accurately represented by their first few moments with respect to the microscopic velocity �.

3. HYDRODYNAMIC LATTICE BOLTZMANN EQUATION

Conventional lattice Boltzmann equations simulate the isothermal compressible Navier–
Stokes equations, with no magnetic field, in the limit of small mean free path [17, 64]. The
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macroscopic quantities of density � , momentum �u, and stress Π are given by moments
of a set of N scalar distribution functions fi (x, t), where i = 1, . . . , N ,

� =
N∑

i=0

fi , �u =
N∑

i=0

�i fi , Π =
N∑

i=0

�i �i fi , (13)

which is the discrete analogue of the integral moments in (1). The derivation is very similar
to the classical derivation of the Navier–Stokes equations from the continuum Boltzmann
equation [11, 12, 32, 40], except that integrals with respect to � are replaced by sums over �i .

Each vector �i may be thought of as a particle speed associated with a distribution function
fi . As explained below, the set of velocity vectors �i fit together to form a lattice in velocity
space, which becomes a lattice in physical space when the equations are integrated over a
time interval 	t . Alternatively, the �i may be thought of as nodes in a Gaussian quadrature
formula for the moments with respect to � of a distribution function f (x, t, �) that varies
continuously with �, in which case the particular hydrodynamic lattice Boltzmann equation
below corresponds to a systematic truncation of the continuum Boltzmann equation in
velocity space [24, 35, 36, 66].

The distribution functions fi evolve according to the lattice Boltzmann equation,

∂t fi + �i · ∇ fi = − 1

��

(
fi − f (0)

i

)
, for i = 0, . . . , N . (14)

Again, the right hand side uses the BGK approximation [3] to the collision term, as in (3).
The small parameter � has been introduced so that solutions to (14) may be constructed
via a multiple scales expansion in �. The parameter � may be identified physically with the
dimensionless mean free path, or Knudsen number, or with a computational grid spacing,
but its main purpose is to avoid the moment closure problem that plagues hydrodynamic
turbulence [4, 45].

The Chapman–Enskog expansion poses a multiple scale expansion of both f and t , but
not x, in powers of the small parameter �,

fi = f (0)
i + � f (1)

i + �2 f (2)
i + · · · , ∂t = ∂t0 + �∂t1 + · · · , (15)

where t0 and t1 are advective and diffusive timescales, respectively. We impose the solvability
conditions

N∑
i=0

f (n)
i = 0,

N∑
i=0

�i f (n)
i = 0, for n = 1, 2, . . . , (16)

so the higher order terms f (1)
i , f (2)

i , . . . , do not contribute to the macroscopic density or
momentum. These constraints imply evolution equations for the macroscopic quantities.

Substituting these expansions into the lattice Boltzmann equation (14), we obtain

(
∂t0 + �i · ∇) f (0)

i = − 1

�
f (1)
i , (17a)

∂t1 f (0)
i + (∂t0 + �i · ∇) f (1)

i = − 1

�
f (2)
i , (17b)
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at O(1) and O(�). The leading order continuity and momentum equations, (12a) and (12b)
with � = 0, follow from taking the moments

∑N
i=0 and

∑N
i=0 �i of (17a), respectively,

∂t0 � + ∇ · (�u) = 0, ∂t0(�u) + ∇ · Π(0) = 0. (18)

The right hand sides vanish by virtue of the solvability conditions (16). Similarly, we obtain

∂t1 � = 0, ∂t1(�u) + ∇ · Π(1) = 0, (19)

at next order in �, from moments of (17b) and the solvability conditions. Thus neglecting
terms of O(�2), Eqs. (18) and (19) combine to give

∂t � + ∇ · (�u) = 0, ∂t (�u) + ∇ · (Π(0) + �Π(1)
) = 0. (20)

An equation for the first correction stress, Π(1), follows from the second moment,
∑N

i=0 �i �i

of (17a),

∂t0Π
(0) + ∇ ·

(
N∑

i=0

�i �i �i f (0)
i

)
= − 1

�
Π(1). (21)

If we choose an equilibrium distribution f (0)
i with moments

N∑
i=0

f (0)
i = � ,

N∑
i=0

�i f (0)
i = �u, Π(0) =

N∑
i=0

�i �i f (0)
i = �� l + �uu, (22)

we recover the leading order (� = 0) continuity (12a) and momentum equations (12b)
from (18). Comparing (22) with (12b), the equation of state is p = �� . Thus � = c2

s is the
temperature in dimensionless variables in which Boltzmann’s constant equals unity. The
most common lattice Boltzmann equations make an isothermal (constant �) approximation
[17, 38, 64, 65, 72]. The isothermal approximation suffices to simulate weakly compressible
fluids, since the associated error is O(Ma2), like the compressibility error, and is manifested
as an additional bulk viscosity [25].

An explicit formula for a distribution function with the correct moments is [17, 64]

f (0)
i = �wi

(
1 + �i · u

�
+ (�i · u)2

2�2
− u2

2�

)
, (23)

where the wi are weights associated with the lattice speeds �i . The most common example
is a two-dimensional nine-speed lattice with the temperature � = 1/3, and weights [17, 35,
36, 64]

wi =




4/9, i = 0,

1/9, i = 1, 2, 3, 4,

1/36, i = 5, 6, 7, 8.

(24)

The velocity vectors, with magnitudes |�i | = 1 for i = 1, 2, 3, 4 and |�i | =
√

2 for i =
5, 6, 7, 8, form a square lattice, as illustrated in Fig. 1.
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FIG. 1. The nine particle speeds used by the hydrodynamic lattice Boltzmann equation. Only the five speeds
0, 1, 2, 3, 4, shown with thick lines, are used for the magnetic field.

Since we can compute ∂t0Π
(0) = ∂t0(�� l + �uu) from the known expressions (18) for ∂t0 �

and ∂t0(�u), (21) gives an explicit expression for Π(1) in terms of � and u and their spatial
derivatives. This is where the Chapman–Enskog expansion sidesteps the usual moment
closure problem, since we can compute Π(0) from the macroscopic variables � and u and
their derivatives with respect to x and t . For the equilibrium distributions f (0)

i above, Eq. (21)
simplifies to [24, 25, 38, 64]

Π(1)
�� = −��� (∂�u� + ∂�u�) + �∂�	 (�u�u�u	 ), (25)

which further simplifies to Π(1) = −2��S + O(Ma3) in the low Mach number limit. Thus
if we choose �� = �/�, the correct continuity and viscous Navier–Stokes momentum equa-
tions are recovered from the lattice scalar Boltzmann equation (14) in the limit of small
mean free path �. The O(�u3) term is an artifact of truncating the equilibrium distribution
(23) at O(u2) [64] and may be removed by retaining more terms, at the expense of a larger
lattice with 13 or 17 speeds rather than 9 [65, 72].

4. LORENTZ FORCE AND MAXWELL STRESSES

The inviscid (� = 0) momentum equation (11b) with a magnetic field may be rewritten
in conservative form as [4, 48, 63]

∂t (�u) + ∇ ·
(

pl + �uu + 1

2
B2l − BB

)
= 0. (26)

The Lorentz force J × B has been expressed as minus the divergence of the Maxwell stress
tensor given by

M�� = 1

2
��|B|2 − B� B�, (27)

under the assumption that ∇ · B = 0. Thus the hydrodynamic lattice Boltzmann equation
of the last section may be modified to include the Lorentz force by changing the second
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moment, Π(0) =∑ �i �i f (0)
i , of the equilibrium distribution function f (0)

i to be

Π(0) =
(

�� + 1

2
B2

)
l + �uu − BB, (28)

while leaving the zeroth, � =∑ f (0)
i , and first, �u =∑ �i f (0)

i , moments unchanged. An
extra term with the required moments is

−wi
1

2�2
(�i �i − �l) : (M − �l(Tr M)), (29)

based on expanding the equilibrium distribution in the orthogonal tensor Hermite poly-
nomials 1, �, �� − �l, . . . [24, 35, 36]. In two space dimensions, with B = (Bx , By, 0), a
suitable equilibrium distribution is thus

f (0)
i = wi �

(
1 + ��i · u + 1

2�2
(�i · u)2 − 1

2�
u2

)
+ wi

2�2

(
1

2
|B|2|�i |2 − (�i · B)2

)
, (30)

although there are other equilibria with the same moments [23]. In two dimensions, the mo-
ments appearing in the Chapman–Enskog expansion apply only eight constraints, whereas
the nine-speed lattice involves nine undetermined equlibrium distributions.

A body force F, such as F = J × B in (12b), gives rise to a spurious contribution −�(Fu +
uF) to the viscous stress Π(1) unless the second (��) moment of the body force is treated
correctly [24]. This is because the inviscid momentum equation is used to eliminate the
time derivative of the leading order stress Π(0) in favor of spatial derivatives, as outlined in
the Appendix. In continuum kinetic theory these extra terms are canceled by terms coming
from the second moment of the microscopic body force term �−1F · ∇� f in the Boltzmann
equation. If the body force F is known pointwise in terms of macroscopic variables, the
spurious viscous stress may be eliminated by adding extra terms to the discrete body force
[24]. However, the Lorentz force depends upon spatial gradients of the macroscopic variable
B. While it is possible to write the Lorentz force as the divergence of a stress, and so
incorporate it into f (0)

i , it is not possible to write the combination Fu + uF as either a
pointwise force or the divergence of a stress. Fortunately, in our scalings the spurious
term is O(Ma3/Re), so it is consistent to neglect it along with the usual O(�u3) term in
(25) above. The scheme in this paper could be improved by including this extra stress,
using the consistent approximation to the current J = ∇ × B at lattice points derived in
(45a) and (45b). This may reduce the numerical magnitude of the errors at finite Mach
number (see Section 9), although there would still be an O(Ma3/Re) spurious viscous
stress from ∇ · (�uuu), an O(Ma3/Rm) error in the resistive term Λ(1) due to ∂t0Λ

(0) (see
the Appendix), and an O(Ma2) compressibility error.

5. LATTICE KINETIC INDUCTION EQUATION

As explained in the Introduction, it is not possible to construct a kinetic formulation for the
magnetic induction equation using a scalar distribution function in a way analogous to the
use of the scalar Boltzmann–BGK equation to simulate the vector Navier–Stokes momentum
equation. Instead, we introduce a vector-valued distribution function gi (x, t), as proposed by
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Croisille et al. [21] and Bouchut [7] for continuous � and equate the macroscopic magnetic
field vector B with the sum of the vector distribution function gi over lattice vectors,

B =
M∑

i=0

gi . (31)

We propose that gi (x, t) should satisfy the vector Boltzmann–BGK equation

∂t gi + �i · ∇gi = − 1

��m

(
gi − g(0)

i

)
, (32)

for some vector-valued equilibrium distribution g(0)
i . We use an uppercase �i for the set of

M lattice vectors in (32), with associated weights Wi and temperature �, to emphasise that
the lattice used for (32) may differ from the lattice used for the hydrodynamic distribution
functions fi . However, the nodes of the two lattices should coincide so that we may transfer
macroscopic quantities such as u and B between the two lattices without interpolation.
We expect the equilibrium distribution g(0)

i to depend upon u, just as the hydrodynamic
equilibrium distribution f (0)

i in (30) depends upon B. The relaxation time �m in (32) may
differ from the time � in the hydrodynamic Boltzmann–BGK equation (14), so the electrical
resistivity 
 may be adjusted independently of the fluid viscosity �.

We included a small parameter � in Eq. (32) to order the terms in a Chapman–Enskog
expansion, which proceeds analogously to the expansion for the scalar lattice Boltzmann–
BGK equation (14). We pose a multiple scale expansion of both g and t in powers of �,

g = g(0) + �g(1) + �2g(2) + · · · , ∂t = ∂t0 + �∂t1 + · · · , (33)

where again t0 and t1 are advective and diffusive timescales, respectively. We impose the
single solvability condition

M∑
i=0

g(1)
i =

M∑
i=0

g(2)
i = · · · = 0. (34)

In other words, the higher order terms do not contribute to the macroscopic magnetic field.
Substituting into the vector Boltzmann–BGK equation (32), we obtain

(
∂t0 + Ξi · ∇)g(0)

i = − 1

�m
g(1)

i , (35a)

∂t1 g(0)
i + (∂t0 + Ξi · ∇)g(1)

i = − 1

�m
g(2)

i , (35b)

at O(1) and O(�). From
∑M

i=0 of (35a) and (35b) we obtain an evolution equation for the
macroscopic magnetic field B in the form

∂t B� + ∂�

(
Λ(0)

�� + �Λ(1)
��

) = 0, (36)

where the tensors Λ(0),Λ(1), . . . , are defined by the first moments of g(0), g(1), . . . ,

Λ(n)
�� =

M∑
i=0

�i�g(n)
i� , for n = 0, 1, . . . . (37)
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The detailed derivation follows the derivation of the momentum equation (20) above. From∑M
i=0 �i� of (35a) we obtain an equation analogous to (21) for the first correction Λ(1),

∂t0Λ
(0)
�� + ∂	

(
M∑

i=0

�i	�i�g(0)
i�

)
= − 1

�m
Λ(1)

�� . (38)

Equation (36) with � = 0 will coincide with the ideal MHD induction equation (11b) if
we choose an equilibrium distribution g(0)

i� with the moments

M∑
i=0

gi� = B�, (39)

Λ(0)
�� =

M∑
i=0

�i�g(0)
i� = u� B� − B�u�. (40)

The simplest choice is

g(0)
i� = Wi [B� + �−1�i�(u� B� − B�u�)], (41)

where the �i and Wi are the vectors and weights of a symmetric lattice satisfying

M∑
i=0

Wi = 1,

M∑
i=0

Wi�i��i� = ���. (42)

The symmetry of the lattice ensures that the first and third moments vanish automatically,∑
i Wi�i� = 0 and

∑
i Wi�i��i��i	 = 0. For the equilibrium distribution (41) we find

M∑
i=0

�i	�i�g(0)
i� = �	� B�, (43)

so Eq. (38) implies that

�
(1)
�� = −��m∂� B� + O(Ma3), (44)

where the O(Ma3) term is due to ∂t0Λ
(0) (see the Appendix). Thus the macroscopic equa-

tion (36) is the required resistive magnetic induction equation (11b), with an error of
O(Ma3/Rm), provided we choose ��m = 
/�. We note that Λ(1) is not antisymmetric
because ∂� B� �= ∂� B� in general. However, the missing term vanishes when we compute
∂��

(1)
�� , since ∂�∂� B� = ∂�∇ · B = 0. Thus this system simulates the induction equation in

the form appearing in (12c), rather than the original explicitly antisymmetric form in (11b)
(see Section 6). Equation (44) provides consistent approximations to ∇ · B and J = ∇ × B,

TrΛ = Λ�� = −��m∇ · B + O
(
� 2

m

)
, (45a)

���	

(
Λ�� − Λ(0)

��

) = −��m(∇ × B)	 + O
(
� 2

m

)+ O(Ma3). (45b)

The O(Ma3) term vanishes from TrΛ since it simplifies to ∂t0 TrΛ(0), and TrΛ(0) = 0.
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As the fourth-order lattice tensor
∑

Wi�i�i�i�i is not required in deriving the induction
equation, we may use a lattice with less symmetry than the nine-speed lattice needed for an
isotropic viscous momentum equation. In two dimensions we used a five-point lattice with
weights

W0 = 1

3
, Wi = 1

6
, for i = 1, 2, 3, 4, (46)

for which � = 1/3, the same as � for the nine-point lattice (24) used in the two-dimensional
momentum equation. These speeds are illustrated in Fig. 1, where only the thick lines are
used for the magnetic field. This permits a substantial saving in storage, partly compensating
for the need to associated a vector-valued distribution function with each lattice speed.

We also tried an alternative four-point lattice omitting the zero speed,

Wi = 1

4
, for i = 1, 2, 3, 4. (47)

This lattice satisfies (42) with � = 1
2 . For given flow parameters and grid resolution, sim-

ulations with this lattice proved notably less stable than with the five-point lattice. For
example, the doubly periodic coalescence simulation with 
 = � = 0.004 was unstable on
a 256 × 256 grid when using only four lattice speeds but was stable with five speeds. This is
as expected by analogy with lattice Boltzmann hydrodynamics, where including “rest parti-
cles” with zero speed substantially improves the stability of simulations at larger Reynolds
numbers for a given spatial resolution [14]. There may be further scope for optimizing the
lattice weights Wi (and also �) beyond the two choices in (46) and (47).

As noted above, the equilibrium distribution (41) in fact leads to a perturbation electric
field tensor Λ(1) that is not antisymmetric. Thus we approximate the continuum induction
equation as it appears in (12c), rather than the explicitly antisymmetric form (11b). From
the divergence of (12c) we find that ∇ · B satisfies the diffusion equation

∂t (∇ · B) = 
∇2(∇ · B), (48)

instead of ∂t∇ · B = 0. This difference is probably only beneficial since at worst we might
expect ∇ · B to be generated with alternating sign at small scales [71], which will quickly
cancel out through diffusion, and Λ(0) + Λ(1) in fact coincides with the tensor proposed in
[43] for writing the induction equation in divergence form.

In any case, it is not possible to modify the equilibrium distribution in our formulation
to make Λ(1) antisymmetric. A natural idea is to try to modify g(0)

i so that (43) becomes

M∑
i=0

�i	�i�g(0)
i� = �(	� B� − 	� B�), (49)

which is antisymmetric under the interchange of � and �. However, the right hand side is
not symmetric under the interchange of � and 	 , whereas the left hand side must have this
symmetry by construction. The expression on the left hand side cannot be both symmetric
under (� ↔ 	 ) and antisymmetric under (� ↔ �) without vanishing completely.
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6. MAINTAINING ∇ · B = 0

As explained in the introduction, the structure of the magnetic induction equation implies
that ∂t∇ · B = 0. Since ∇ · B = 0 in the initial conditions, ∇ · B should remain zero subse-
quently. From the traces of (40) and (38) we find that TrΛ(0) = 0 and TrΛ(1) = −��m∇ · B.
The O(Ma3) term in (44) vanishes exactly upon taking the trace, since it is the time deriva-
tive of the traceless tensor Λ(0). Thus the divergence-free condition ∇ · B = 0 is equivalent
to TrΛ = 0 to the first two orders in the Chapman–Enskog expansion. Since we are ignoring
Burnett-like effects at higher order beyond the viscous Navier–Stokes equations [11, 12,
32], it is consistent to approximate the constraint ∇ · B = 0 using the constraint TrΛ = 0.

In numerical experiments TrΛ = 0 was maintained to machine round-off error, typically
|TrΛ| < 10−16, using 64-bit (17 digit) IEEE floating point arithmetic. We also constructed
spectrally accurate approximations to ∇ × B and ∇ · B from B evaluated at lattice points.
The spectral approximation to ∇ · B differed from zero by an amount proportional to the
square of the lattice spacing, because TrΛ = 0 is a consistent, and thus only second-order
accurate, approximation to ∇ · B = 0. However, we still found ∇ · B � |∇ × B| even in
regions of high current concetration, as shown in Table III below.

Some explanation for why TrΛ = 0 is maintained to machine round-off error, rather than
merely to spatial truncation error, may be gained by examining higher order terms in the
Chapman–Enskog expansion. From the trace of (35b) we obtain

Tr Λ(2) = 2�� 2
m∂t0∇ · B = 0, (50)

since ∂t0∇ · B = ∇∇: (Bu − uB) = 0. Thus TrΛ = −�m�∇ · B + O(� 3
m), rather than +

O(� 2
m) as originally expected. Carrying the expansion leading to equations (35a) and (35b)

to one higher order,

∂t2 g(0)
i + ∂t1 g(1)

i + (∂t0 + �i · ∇)g(2)
i = − 1

�m
g(3)

i , (51)

we also obtain

TrΛ(3) = 2� 2
m�∂t1∇ · B − � 3

m∂�∂�∂	

M∑
i=0

Wi�i��i��i	�i� B�

= 2� 3
m�2∇2∇ · B − �� 3

m

(
∂3 Bx

∂x3
+ ∂3 By

∂y3

)
, (52)

for the five-speed lattice in (46). We have also used ∂t1(∇ · B) = ��m∇2∇ · B from (48). The
lack of isotropy of the fourth lattice tensor appearing in (52) is evident from the form of the
second term, which is why this lattice is not suitable for lattice Boltzmann hydrodynamics
with an isotropic viscous stress. However, TrΛ(3) comprises derivatives of ∇ · B, which
should be small, multiplied by the third power of the small parameter � , the mean free path,
so it is reasonable to expect that it would be lost in the numerical rounding error, as found
experimentally.

Powell [63; see also 48] proposed including source terms proportional to ∇ · B in the
induction, momentum, and energy equations. These terms are supposed to reduce the un-
desirable influence of spurious magnetic monopoles on the rest of the solution by allowing
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them to advect away from any regions where they might be formed. In particular, Powell
proposed the induction equation

∂t B + ∇ · (uB − Bu) = −u∇ · B, (53)

in the ideal case (
 = 0), which implies a passive advection equation for ∇ · B. Janhunen
[42] recently suggested that only the induction equation should be modified, which preserves
energy and momentum conservation (see [26] for further justification). Either scheme could
be readily incorporated via source terms in the induction, and possibly momentum, equations
since we have a consistent approximation to ∇ · B available at lattice points from TrΛ.
However, such a modification does not seem to be necessary based on the two-dimensional
simulations presented below.

7. REDUCTION TO FULLY DISCRETE FORM

To achieve a fully discrete system suitable for computations we must approximate (14)
and (32) in x and t , as well as in �. Integrating (14) along a characteristics for a time interval
	t , we obtain

fi (x+�i	t, t +	t)− fi (x, t)=
∫ 	t

0
− 1

�

(
fi (x+�i s, t + s)− f (0)

i (x+�i s, t + s)
)
, (54)

and a similar equation for each vector component of (32). The integral on the right hand
side of (54) may be approximated with second-order accuracy using the trapezium rule,

− 1

�

∫ 	t

0
fi (x + �i s, t + s) ds = − 1

�

	t

2

(
fi (x + �i	t, t + 	t) − f (0)

i (x + �i	t, t + 	t)

+ fi (x, t) − f (0)
i (x, t)

)+ O(	t3). (55)

Unfortunately, the f (0)
i (x + �i	t, t + 	t) terms are not known in advance, since they de-

pend on fi (x + �i	t, t + 	t) and gi (x + �i	t, t + 	t) via � , u, and B evaluated at t + 	t .
Thus a straightforward combination of (55) and (54) yields a set of coupled nonlinear al-
gebraic equations which must be solved to find the fi and gi at time t + 	t . However, this
system of equations may be rendered fully explicit by a change of variables [34, 37]. We
introduce a new set of distribution functions f̄ i and ḡi defined by

f̄ i (x, t) = fi (x, t) + 	t

2�

(
fi (x, t) − f (0)

i (x, t)
)
, (56a)

ḡi (x, t) = gi (x, t) + 	t

2�m

(
gi (x, t) − g(0)

i (x, t)
)
. (56b)

In these new variables the scheme defined by Eqs. (14), (32), and (55) is algebraically
equivalent to the fully explicit scheme

f̄ i (x + �i	t, t + 	t) = f̄ i (x, t) − 	t

� + 	t/2

(
f̄ i (x, t) − f (0)(x, t)

)
, (57a)

ḡi (x + �i	t, t + 	t) = ḡi (x, t) − 	t

�m + 	t/2

(
ḡi (x, t) − g(0)(x, t)

)
, (57b)
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which is the one we used computationally. The macroscopic variables appearing in the
equilibria f (0)

i and g(0)
i defined by (30) and (41) are readily reconstructed from moments of

the new distribution functions,

� =
8∑

i=0

f̄ i , �u =
8∑

i=0

�i f̄ i ,

(
1 + 	t

2�

)
Π =

8∑
i=0

�i �i f̄ i + 	t

2�
Π(0), (58a)

B =
4∑

i=0

ḡi ,

(
1 + 	t

2�m

)
Λ�� =

4∑
i=0

�i� ḡi� + 	t

2�m
Λ(0)

�� . (58b)

We describe numerical experiments using this scheme in the next two sections.

8. HARTMANN FLOW

Hartmann flow comprises a steady unidirectional flow of viscous, electrically conducting
fluid through a channel containing a transverse magnetic field. It is the MHD analogue of
plane Poiseuille flow in ordinary hydrodynamics, and like Poiseuille flow the nonlinear
terms vanish for this flow geometry. It is thus one of the few analytically tractable MHD
flows, with steady solutions of the form u = (0, u(x), 0), B = (B0, b(x), 0), and � = � (x).
In the incompressible limit, the MHD equations for Hartmann flow simplify to two linear
equations [54, 67],

0 = F + �0�
d2u

dx2
+ B0

db

dx
, 0 = B0

du

dx
+ 


d2b

dx2
, (59)

where F denotes a spatially uniform forcing in the along-channel direction, such as a
pressure gradient. Assuming rigid and imperfectly conducting boundary conditions, so that
u and b both vanish on x = ±L , the system (59) has the exact solution

b(x) = F L

B0

(
sinh(H x/L)

sinh(H)
− x

L

)
, u(x) = F L√

�0 B0

√



�
coth(H)

(
1 − cosh(H x/L)

cosh(H)

)
.

(60)

The dimensionless parameter H = B0L/
√

�0
� is the Hartmann number, which measures
the ratio of Lorentz to viscous forces. When the Hartmann number is large, as is typical in
liquid metal MHD applications, the magnetic field maintains a nearly uniform velocity u
over the bulk of the channel [67]. The flow adjusts to the no-slip boundary conditions via thin
Hartmann boundary layers of width O(1/H) located at the two walls x = ±L . Conversely,
the flow approaches the parabolic Poiseuille profile u(x) = (L2 − x2)F/(2��0) for small
Hartmann numbers and weak magnetic fields.

The flow along the channel was driven by an imposed additional stress x F(x̂ŷ + ŷx̂),
whose divergence gives the required body force F ŷ. The corresponding equilibrium distri-
bution,

f (0)
i = wi �

(
1 + ��i · u + 1

2�2
(�i · u)2 − 1

2�
u2

)

+ wi

2�2

(
1

2
|B|2|�i |2 − (�i · B)2

)
− wi

�2
Fx�i x �iy, (61)

contains an extra term for a driving stress, as well as the Maxwell stress term in (30).
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FIG. 2. Streamwise velocity and magnetic field in Hartmann flow. The dots (�) are from numerical sim-
ulations with 64 points, and the solid lines are exact incompressible solutions. When the Hartmann number
H = B0 L/

√
�0
� is large, the flow is uniform outside Hartmann layers of thickness H−1/2 at the walls.

Velocity boundary conditions were imposed using the bounce-back method [17, 38],
placing the effective boundary half a lattice spacing outside the lattice point at which it is
applied. The magnetic boundary conditions also used the bounce-back method, but with
the sign reversed to enforce b(x) = 0 at x = ±L . Some results are shown in Fig. 2. We
had to take the Mach number Ma ∝ 	x to establish second-order convergence to the
incompressible solution (60), since the compressibility error is O(Ma2) and the spatial
truncation error is O(	x2). There is also an O(Ma2/Re) error in the viscous stress due to
the uniform driving force (see Section 4 and [24]).

9. REDUCED MAGNETOHYDRODYNAMICS

Many important physical processes may be modeled by the two-dimensional incom-
pressible “reduced” magnetohydrodynamic equations [4, 27, 50, 51]. These equations may
be reformulated as two scalar equations by writing u = ẑ × ∇� = (−∂y�, ∂x �, 0), and
B = ẑ × ∇� = (−∂y� , ∂x � , 0), where � and � are the streamfunction and magnetic flux
function, respectively [4, 20, 58]. These representations automatically satisfy ∇ · u = 0
and ∇ · B = 0. The vorticity and electric current lie purely in the z direction, so we have
∇ × u = �ẑ and ∇ × B = j ẑ, with � = ∇2� and j = ∇2� . The conventions which use
� for the magnetic flux function, and the plus sign in � = +∇2�, are standard in reduced
MHD, despite the unfortunate conflict with common, purely hydrodynamic usage.
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With these definitions, the incompressible MHD equations (11a) and (11b) become

∂t � + [�, �] = [� , j] + �∇2�, (62a)

∂t � + [�, � ] = 
∇2� , (62b)

where the Jacobian or Poisson bracket is [�, �] = (∂x �)(∂y�) − (∂y�)(∂x �). The vorticity
equation (62a) differs from the two-dimensional Navier–Stokes equations through the ap-
pearance of a source term [� , j] due to the Lorentz force. This term loosely resembles the
vortex-stretching term present in the three-dimensional Navier–Stokes vorticity equation,
so in some ways the qualitative behavior of the 2D MHD equations more closely resembles
that of the 3D Navier–Stokes equations than the 2D Navier–Stokes equations [4, 6, 33, 62].
For instance, the peak vorticity may grow exponentially in the 2D ideal MHD equations
[33], whereas it is bounded by the initial peak vorticity in the 2D Euler and Navier–Stokes
equations. Thus in 2D MHD turbulence the energy dissipation rate may attain a nonzero
limit at high Reynolds numbers [4, 6], whereas in 2D hydrodynamic turbulence the energy
dissipation rate is known to be O(Re−1).

9.1. Orszag–Tang Vortex

The Orszag–Tang vortex [58] is a two-dimensional flow evolving from simple determin-
istic initial conditions, namely

� = 2(cos(x) − sin(y)), � = 2 cos(x) − cos(2y), (63)

in the periodic domain 0 ≤ x, y ≤ 2�. This flow nevertheless contains most of the features
of MHD turbulence, notably selective decay, magnetic reconnection, formation of jets, and
dynamic alignment. The deterministic initial conditions allow a direct comparison with
previously published computations [20, 22, 58, 60–62, 71]. Moreover, the compressible
analogue of the Orszag–Tang vortex has already been studied in the subsonic [22] and
supersonic [60] regimes, so we may identify finite-compressibility features in the lattice
kinetic simulations.

We performed simulations of the compressible isothermal Orszag–Tang vortex with � =

 = 0.02 on 1282, 2562, and 5122 grids at various Mach numbers. The nominal Reynolds
numbers based on the initial velocity were Re = Rm ≈ 628. We also computed solutions of
the incompressible Orszag–Tang vortex using a conventional Fourier spectral collocation
method with no dealiasing [8, 10, 22, 61, 62]. The nonlinear terms in the spectral method
were integrated in time using fourth-order Runge–Kutta, while the linear diffusive terms
were treated exactly using integrating factors, as with the linear propagator method used
in [39]. This is only possible because Fourier modes are eigenfunctions of the diffusion
operators, so the exp(−
|k|2t) decay of each Fourier mode may be treated analytically by
a change of variables.

The lower portions of Tables I and II show the expected exponential spatial convergence
of a well-resolved spectral solution. Comparisons between different grids were performed
on the coarse grid by pointwise coarsening of the fine-grid solution. The timestep was
made sufficiently short that the temporal integration error in the 5122 run was less than the
difference between the 2562 and 5122 runs. Thus even the 1282 the spectral solutions are
effectively “exact” solutions, for the purpose of comparison with results computed using
the lattice kinetic scheme.
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TABLE I

Spatial Convergence: l2 Errors at t = 0.5 between Kinetic and Spectral Solutions

Grid Vorticity � Current j Current from Λ(1)

1282 kinetic–1282 spectral 0.2486 0.3770 0.1788
2562 kinetic–2562 spectral 0.0550 0.0931 0.0400
5122 kinetic–5122 spectral 0.0132 0.0220 0.0088

1282 spectral–2562 spectral 1.7 × 10−6 2.2 × 10−6

2562 spectral–5122 spectral 3.1 × 10−11 3.2 × 10−11

Note. Discrete l2 norm of the differences between vorticities and currents computed by the kinetic and spectral
methods at t = 0.5. The last two rows show that even the 1282 spectral solution is effectively exact compared with
the spatial truncation error in the lattice kinetic scheme. The last two differences, between two different resolutions,
were computed by projecting onto the coarser grid. The top three rows confirm the expected second-order spatial
accuracy of the lattice kinetic scheme.

Tables I and II show that the spatial convergence of the lattice kinetic scheme is second
order, as expected. These simulations were all performed with Ma = √

3/50, for which
the error due to finite compressibility is much smaller than the spatial truncation error, as
shown in Tables IV–VI below. The columns labeled “Vorticity �” and “Current j” denote
quantities constructed from the primitive variables u and B at lattice points by spectrally
accurate differentiation. These are the quantities plotted in Fig. 3. The right hand columns
labeled “Current from Λ(1)” refer to a current computed locally at lattice points from the
nonequilibrium part of the electric field tensor Λ using (45b). The error in the current
obtained from Λ(1) appears to be consistently about half that of the error in the current
obtained by differentiating B, although the order of convergence is the same. The errors at
t = 1.0 are systematically larger than those at t = 0.5 due to the formation of thin layers with
large currents and vorticities (see Fig. 3). Table III shows that the approximation to ∇ · B
computed by spectrally differentiating B is proportional to 	x2. This is as expected since
the scheme is second-order accurate and conserved the consistent approximation TrΛ = 0
to numerical round-off error.

We also investigated the errors due to finite Mach number, or finite compressibility.
Tables IV–VI show the discrete l2 differences in vorticity and current between simulations

TABLE II

Spatial Convergence: l2 Errors at t = 1.0 between Kinetic and Spectral Solutions

Grid Vorticity � Current j Current from Λ(1)

1282 kinetic–1282 spectral 1.9302 2.1296 1.0295
2562 kinetic–2562 spectral 0.5985 0.5483 0.2254
5122 kinetic–5122 spectral 0.1531 0.1364 0.0544

1282 spectral–2562 spectral 0.0191 0.0149
2562 spectral–5122 spectral 2.4 × 10−7 8.2 × 10−8

Note. Discrete l2 norm of the differences between vorticities and currents computed by the kinetic and spectral
methods at t = 1.0. The last two rows show that even the 1282 spectral solution is effectively exact compared with
the spatial truncation error in the lattice kinetic scheme. The last two differences, between two different resolutions,
were computed by projecting onto the coarser grid. The top three rows confirm the expected second-order spatial
accuracy of the lattice kinetic scheme.
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FIG. 3. Vorticity and current for the Orszag–Tang vortex. Positive contours are solid lines; negative contours
are dotted lines. This figure should be compared with the inviscid, perfectly conducting computations in Fig. 1 of
[33]. The flow at t = 0.85 is visibly affected by our finite resistivity and viscosity, whereas the computations in
[33] were inviscid and perfectly conducting (
 = � = 0).
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TABLE III

Spatial Convergence: Maxima of |∇ × u|, |∇ × B|, and |∇ · B| Computed Spectrally

t Grid Vorticity � Current j Spectral ∇ · B

0.5 1282 6.744 17.96 0.0939
2562 6.754 18.20 0.0246
5122 6.758 18.24 0.0062

1.0 1282 14.07 45.13 0.5642
2562 14.16 46.30 0.1611
5122 14.20 46.59 0.0415

at various Mach numbers on a fixed grid. These Mach numbers were chosen to be
√

3/n,
based on the initial maximum velocity |u|max = 2, which ensures that t = 0.05 precisely
after an integer number of steps of length 	t . The differences shown are the discrete l2 dif-
ferences between simulations at Ma and Ma/2. The convergence rates were computed from
successive pairs of differences, symbolically from the ratio (Ma − Ma/2)/(2Ma − Ma),
where subtraction indicates the difference between simulations at the two different Mach
numbers. Thus the convergence rate is estimated from a simulation at the value Ma in the
left hand column, in conjunction with simulations at 2Ma and Ma/2.

Tables IV and VI show the expected second-order convergence towards the incompress-
ible limit on a fixed grid as the Mach number tends to zero. The convergence at t = 1.0 on
the 1282 grid is rather poorer, as shown in Table V. This appears to be due to inadequate
spatial resolution, as the dominant error is a diagonal grid-scale oscillation around thin cur-
rent layers. Demonstrating convergence of the derivatives � and j , instead of the primitive
variables u and B, is a particularly strenuous test in the presence of thin current layers.

The differences due to finite compressibility are fairly small compared with the spatial
truncation errors. This is in line with the results of Dahlburg and Picone [22], who found that
their Ma = 0.2 solution was almost indistinguishable from their Ma = 0 solution. Unfor-
tunately at sufficiently large Mach numbers our algorithm was not stable enough to permit
a direct comparison with the deviations at Ma = 0.4 and Ma = 0.6 found in [22], but it
was just possible to discern weak jets emerging from the current layers. In any case, the

TABLE IV

Convergence with Mach Number: l2 Errors at t = 0.5 on a 128 × 128 Grid

Vorticity � Current j

Mach number l2 error Rate l2 error Rate

0.277 2.89 × 10−2 4.91 × 10−2

0.139 8.98 × 10−3 1.68 1.55 × 10−3 1.66
0.0693 1.92 × 10−3 2.23 3.45 × 10−3 2.17
0.0346 4.42 × 10−4 2.11 8.56 × 10−4 2.01
0.0173 1.08 × 10−4 2.03 2.26 × 10−4 1.93
0.0087 2.39 × 10−5 2.17 3.87 × 10−5 2.54

Note. The Mach numbers are of the form Ma = √
3/n. The errors are the l2 difference between runs at Ma and

Ma/2, and the convergence rates are computed from (symbolically) the l2 differences (Ma − Ma/2)/(2Ma − Ma).
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TABLE V

Convergence with Mach Number: l2 Errors at t = 1.0 on a 128 × 128 Grid

Vorticity � Current j

Mach number l2 error Rate l2 error Rate

0.277 5.58 × 10−2 8.35 × 10−2

0.139 1.31 × 10−2 2.09 2.013 × 10−2 2.05
0.0693 4.99 × 10−3 1.39 8.63 × 10−3 1.22
0.0346 1.25 × 10−3 2.00 1.97 × 10−3 2.13
0.0173 4.21 × 10−4 1.57 7.71 × 10−4 1.35
0.0087 1.63 × 10−4 1.37 2.96 × 10−4 1.38

Note. The Mach numbers are of the form Ma = √
3/n. The errors are the l2 difference between runs at Ma and

Ma/2, and the convergence rates are computed from (symbolically) the l2 differences (Ma − Ma/2)/(2Ma − Ma).

unmodified nine-speed isothermal lattice Boltzmann equation becomes unstable at Mach
numbers above about 0.2. Various thermal (varying �) lattice Boltzmann schemes intended
for compressible flows have been devised [1, 19] (see [17] for further references). Their
stability at moderate Mach numbers has generally also been disappointing, although suc-
cessful inviscid shock-tube simulations have been performed recently [75, 68]. In principle
our lattice kinetic treatment of the magnetic field could be combined with one of these other
hydrodynamic lattice Boltzmann schemes to simulate fully compressible MHD, but this
topic requires further investigation.

9.2. Doubly Periodic Coalescence Instability

Many astrophysical processes seem to require a release of magnetic energy through
resistive merging, or “reconnection,” of magnetic field lines on timescales much shorter
than a typical resistive diffusion time [4]. This involves the formation of thin current layers,
across which magnetic field diffuses quickly. An equilibrium magnetic field comprising an
array of magnetic islands, like that illustrated in Fig. 4, may be unstable to a coalescence

TABLE VI

Convergence with Mach Number: l2 Errors at t = 1.0 on a 256 × 256 Grid

Vorticity � Current j

Mach number l2 error Rate l2 error Rate

0.277 5.53 × 10−2 8.48 × 10−2

0.139 1.24 × 10−2 2.16 2.01 × 10−2 2.07
0.0693 4.79 × 10−3 1.37 8.62 × 10−3 1.22
0.0346 1.05 × 10−3 2.19 1.76 × 10−3 2.29
0.0173 2.42 × 10−4 2.11 4.04 × 10−4 2.12
0.0087 5.48 × 10−5 2.14 9.46 × 10−5 2.09

Note. The Mach numbers are of the form Ma = √
3/n. The errors are the l2 difference between runs at Ma and

Ma/2, and the convergence rates are computed from (symbolically) the l2 differences (Ma − Ma/2)/(2Ma − Ma).
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FIG. 4. Magnetic flux function � (x, y) at times t = 1.20, 1.75, 1.95, 2.40, 2.90, and 3.40, for the doubly
periodic coalescence instability with � = 0.004 and 
 = 0.001 and a 10242 grid. The nominal Mach number
was

√
3/40 ≈ 0.0433. Positive contours are solid lines; negative contours are dotted lines. This figure should be

compared with Fig. 1 of [53].
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instability [4, 50, 53]. In the initial stage, pairs of magnetic islands associated with currents
of the same sign accelerate towards each other. This is an ideal MHD process which occurs
on a fast inertial timescale. The pairs of islands subsequently merge on a slow diffusive
timescale through the formation of thin current layers between colliding pairs of islands.
For sufficiently low diffusivities the merging occurs on the diffusive Sweet–Parker [59, 70]
timescale, i.e., at a rate proportional to
1/2, via the formation of current layers with thickness
O(
−1/2) [4, 5, 50, 53].

Marliani and Strauss [53] recently investigated the coalescence instability developing
from the initial conditions

� = sin(�(x + y)) sin(�(x − y)), � = 10−4 exp(−10(x2 + y2)), (64)

in the doubly periodic domain −1 ≤ x, y ≤ 1. This doubly periodic configuration, which
had been used previously by Longcope and Strauss [50], is more convenient for numerical
simulations than the configuration used by Biskamp and Welter [5], whose domain was
periodic in one direction and nominally infinite in the other. Marliani and Strauss [53] used
a second-order upwind scheme for the nonlinear terms, combined with a projection step to
enforce ∇ · u = ∇ · B = 0. Their simulations were performed on a hierarchy of adaptively
refined Cartesian grids, reaching an effective resolution of 81922 in the region of the current
layers. For a fixed viscosity � = 0.004, and varying diffusivities 
 = 0.008, 0.004, 0.002,
and 0.001, they verified the expected Sweet–Parker scaling, in which the reconnection rate
is proportional to 
1/2.

We performed simulations for the same values of 
 and � using our lattice kinetic scheme
on various fixed grids with 2562, 5122, or 10242 points. The magnetic flux function at
various times for the run with 
 = 0.001 and � = 0.004 is shown in Fig. 4, which should
be compared with Fig. 1 of [53]. The time histories of the peak current for 
 = 0.008,
0.004, 0.002, and 0.001 are shown in Fig. 5, which should be compared with Fig. 2 of
[53]. Most of our results compare favorably with those of Marliani and Strauss [53]. The
magnetic flux function for the 
 = 0.001 and � = 0.004 simulation plotted in Fig. 4 is
very similar to that in [53]. Any slight differences are most likely due either to the contour
plotting or to the simulation not being completely resolved on our 10242 uniform grid. The
high-frequency oscillations that are visible in the peak currents plotted in Fig. 5 are due to
resolved acoustic modes, and they exactly coincided with runs at the same Mach number
on different grids. They may be suppressed by choosing a Mach number smaller than the
value of

√
3/40 ≈ 0.0433 used, but at the price of taking proportionally more timesteps.

The most striking difference between the peak current histories plotted in Fig. 5, and those
in Fig. 2 of Marliani and Strauss [53], is for the most resistive simulation, with
 = 0.008 and
� = 0.004. Our peak current max(| j |) ≈ 67 is much lower than the value max(| j |) ≈ 200
found in [53]. The instability also becomes visible significantly later, reaching its peak at
around t = 2.5 instead of 2.0. At first sight this is surprising, because the most resistive
simulation should also be the best resolved. However, we found exactly the same discrepancy
using our spectral method, for 5122 as well as 2562 grids, and using initial data offset by half
a lattice point. The linearly growing eigenmode, which has discontinous velocities in the
ideal (� = 
 = 0) MHD case [51], was well resolved for 
 = 0.008, especially on the 5122

grids. Finally, Fig. 6 shows that the peak current initially decays correctly as exp(−4�2
 t),
since the unperturbed field � in (64) is an eigenfunction of the diffusion equation, before
the instability became apparent.
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FIG. 5. Peak current as a function of time t in the doubly periodic coalescence instability with � = 0.004 and

 = 0.008, 0.004, 0.002, and 0.001. The grids used were 2562, 5122, 10242, and 10242, respectively. This figure
should be compared with Fig. 2 of [53]. The nominal Mach number was

√
3/40 ≈ 0.0433. The high-frequency

oscillations are due to resolved acoustic modes. They may be suppressed by using a smaller Mach number, but at
the expense of requiring a larger number of timesteps.

FIG. 6. Peak current as a function of time t in the doubly periodic coalescence instability with � = 0.004
and 
 = 0.008, the lowest line in Fig. 5 above. This figure should be compared with the lowest line in Fig. 2 of
[53]. The almost coincident solid line (—) and dots (�) are the kinetic (2562) and spectral (5122) simulations,
respectively. The dashed curve is the analytical result max(| j |) = 4�2 exp(−4�2
 t) for the linear decay of the
unperturbed magnetic islands. The nominal Mach number was

√
3/80 ≈ 0.0217.
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We believe this discrepancy is due to the timestep in [53] being too long to resolve
resistive diffusion accurately. Marliani and Strauss’s scheme was a modified form of the
upwind projection method used by Bell et al. [2] for the incompressible Navier–Stokes
equations, in which the diffusive terms were treated implicitly in combination with the
projection onto divergence-free vector fields used to enforce incompressibility. The timestep
in these schemes is usually based on a Courant condition of the form 	t = O(	x/umax),
for which an implicit treatment of diffusion is stable but often inaccurate. An accurate
treatment of the diffusion would require a timestep 	t = O(	x2/
), which is typically
shorter. By contrast, the resistive and viscous diffusive terms in our spectral method were
treated exactly using integrating factors, and the lattice kinetic scheme used short timesteps,
	t = O(Ma	x/umax), because the relevant Courant condition is based on the particle
speeds rather than the macroscopic fluid speed. In fact, the oscillations in the peak current
after its first maximum shown in [53] are systematically larger than in our simulations,
which may also be due to an inaccurate treatment of diffusion in [53]. Politano et al. [61]
and Lottermoser and Scholer [52] have found previously that Crank–Nicolson-like implicit
treatments of the resistive diffusion term lead to inaccurate results when the timestep is set by
an advective stability criterion. Minion and Brown [56] have also found an example in which
automated adaptive mesh refinement on hierarchical Cartesian grids leads to qualitatively
wrong results, namely the formation of spurious vortices in the 2D Navier–Stokes equations.

The most likely alternative explanation is that our own simulations were inadequately
resolved, except that we found excellent agreement between the peak currents for different
resolutions, and between the two completely different algorithms, as shown in Figs. 6 and 7
for the cases with
 = 0.008 and 0.002, respectively. The excellent agreement may be partly

FIG. 7. Peak current as a function of time t in the doubly periodic coalescence instability with � = 0.004 and

 = 0.002. The upper oscillatory solid line is the superimposed results from the 5122 and 10242 lattice kinetic
simulations, with nominal Mach number Ma = √

3/40 ≈ 0.0433. The highest dotted line is the superimposed
results from the 2562 and 5122 spectral simulations. The lower two dotted lines are from 1282 and 2562 spectral
simulations, with initial conditions offset by half a lattice spacing. The lower solid line is from a 5122 lattice
kinetic simulation with initial conditions offset by half a lattice spacing.
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because the symmetry of the initial conditions (64) ensures that the peak currents, in the
middle of the current layers, form precisely at lattice points. To check this we performed
some computations with initial data offset by half a lattice spacing, the lower two dotted
lines in Fig. 7. The peak current histories for these computations also converge towards
our previous results, even though the discrepancies for particular grids are considerably
larger because the peak current formed halfway between lattice points. These discrepancies
could probably be reduced by using an interpolation procedure to compute the peak current,
instead of simply taking the maximum value achieved on the discrete lattice. We therefore
believe that our results are correct, and that the treatment of resistivity by Marliani and
Strauss [53] was inaccurate due to overlong timesteps.

10. CONCLUSION

We have devised a lattice kinetic scheme that simulates viscous and resistive incompress-
ible magnetohydrodynamics. Simulations of two substantial problems, the Orszag–Tang
vortex and the doubly periodic coalescence instability, compare favorably with previously
published computations, and with reference solutions computed using a conventional spec-
tral method. We have demonstrated the expected second-order convergence in Mach number,
or timestep 	t , and in lattice spacing 	x . The scheme remained stable in the presence of
thin current and vortex layers, which arise spontaneously in the 2D MHD equations.

As with conventional lattice Boltzmann schemes, our scheme is genuinely multidimen-
sional and maintained a consistent approximation to ∇ · B = 0 to within machine round-off
error. The algorithm generalises straightforwardly to three dimensions. Execution times on
single processor workstations, shown in Table VII, are competitive with spectral methods in
doubly periodic geometry. The much shorter cost per timestep of the lattice kinetic scheme
is offset by the need to take O(1/Ma) more timesteps. The lattice kinetic scheme should
become very favorable when using multiple processors, because it is much easier to paral-
lelise, or in nonperiodic geometries where the pressure equation would otherwise have to
be solved iteratively.

The presented results were all computed on uniform grids. The extension to a hierarchy
of adaptively refined Cartesian grids should be straightforward, using standard techniques
for purely hyperbolic systems [48], and has been achieved for a hydrodynamic lattice
Boltzmann scheme by Filippova and Hänel [28]. In fact, the extension is much simpler than

TABLE VII

CPU Time per Timestep for Spectral and Kinetic Methods on Various Grids

Resolution Machine Spectral timestep Kinetic timestep Ratio

5122 Alpha (600-MHz 21164a) 3.70 s 0.322 s 0.087
5122 SGI (300-MHz R12000) 3.20 s 0.383 s 0.119
5122 Intel (1.6-GHz P4) 1.22 s 0.129 s 0.106

10242 Alpha 18.7 s 1.32 s 0.071
10242 SGI 20.8 s 1.57 s 0.075
10242 Intel 5.85 s 0.54 s 0.092
20482 Intel 33.8 s 2.42 s 0.072

Note. The lower cost per timestep of the kinetic method is offset by the need to take O(1/Ma) more timesteps.
The right hand column is thus effectively the breakeven Mach number. The kinetic method becomes more favorable
for larger problems, presumably due partly to the extra O(log N ) factor in the cost of the fast Fourier transforms.
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for the upwind projection methods used by Marliani and coworkers [20, 33, 53], since there
is no need to solve Poisson’s equation on a hierarchy of grids. There is also scope for further
work that implements boundary conditions other than periodic or homogeneous Dirichlet
or Neumann via bounce-back, as in the Hartmann flow simulations.

Our scheme might best be thought of as part of a family of kinetic-based schemes for
magnetohydrodynamics, one that includes conventional finite-volume discretisations using
kinetic approximations for the fluxes [21, 41, 74]. For instance, the schemes of Xu [74]
and Huba and Lyon [41] both used a velocity distribution function to compute upwind flux
splittings, while retaining a macroscopic treatment of the magnetic field. Croisille et al. [21]
used a kinetic treatment of the magnetic field leading to (10), which they then solved by a
conventional finite-volume scheme. A discussion of kinetic finite-volume schemes for the
compressible Euler equations with no magnetic field may be found in [31]. However, these
approaches are restricted to simulating the ideal (
 = � = 0) equations, whereas our scheme
demonstrates the correct viscous and resistive behavior for finite values of � and 
. This
extension of lattice Boltzman schemes using vector-valued distribution functions may prove
useful for simulating other systems, such as polymeric liquids and other non-Newtonian
fluids. In particular, since the current ∇ × B is available at lattice points, a slightly modified
scheme could be used to simulate generalised MHD equations, including the Hall effect
or ambipolar diffusion. These generalised equations contain nonlinear or spatially varying
second-derivative terms, so the integrating factor approach that makes spectral methods
competitive for normal diffusion cannot be used.

APPENDIX: CALCULATION OF Λ(1) AND Π(1)

The resistive term Λ(1) in the electric field Λ is determined by Eq. (38),

∂t0Λ
(0)
�� + ∂	

(
M∑

i=0

�i	�i�g(0)
i�

)
= − 1

�m
Λ(1)

�� . (A.1)

We may compute ∂t0Λ
(0)
�� using the known time derivatives ∂t0 u� and ∂t0 B� from the leading

order momentum and induction equations,

∂t0Λ
(0)
�� = ∂t0(u� B� − u� B�)

= B�∂t0 u� + u�∂t0 B� − (� ↔ �)

= B�(−�∂� log � − u	∂	 u� + �−1∂	 M	�)

− u�∂	 (u	 B� − u� B	 ) − (� ↔ �), (A.2)

where (� ↔ �) denotes the previous terms with � and � interchanged, so that ∂t0Λ
(0)
�� =

−∂t0Λ
(0)
�� , and M	� is the Maxwell stress tensor from (27). The O(u2 B) and O(u B2) terms

are both O(Ma3) in our scalings, so (A.2) simplifies to

Λ(1)
�� = −�m[�∂� B� − �B�∂� log � + �B�∂� log � + O(Ma3)]. (A.3)

In nearly incompressible flow the density gradients ∇(log �) are O(Ma2), since we expect
∇ p ∼ c2

s ∇� ∼ �u · ∇u. Thus the two terms involving B and log � are also O(Ma3), leaving

�
(1)
�� = −�m�[∂� B� + O(Ma3)]. (A.4)
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Similarly, the viscous stress Π(1) is determined by Eq. (21),

Π(1) = −�
[
∂t0Π

(1) + �(∇(�u) + ∇(�u)� + I∇ · (�u))
]
, (A.5)

having evaluated
∑

i �i �i �i f (0)
i for the equilibria (23). We may compute ∂t0Π

(0) from known
quantities,

∂t0Π
(0) = ∂t0(�� I + �uu) = I�∂t0 � + u∂t0(�u) + ∂t0(�u) − uu∂t0 � , (A.6)

where ∂t0 � and ∂t0(�u) are determined in Eq. (18). In the absence of a body force, this
simplies to [25, 38, 64]

Π(1) = −��� [∇u + (∇u)�] + �∇ · (�uuu), (A.7)

which is a Newtonian viscous stress, plus an O(Ma3) correction because the equilibria
(23) are only accurate to O(u2). If ∂t0(�u) involves a body force F as well as the usual ∇ ·
(�uu + �� I) term, Eq. (A.7) acquires an extra term, −�(Fu + uF) [23]. In continuum kinetic
theory this term is canceled by higher moments of the continuum forcing term, leaving an
unchanged viscous stress [23]. The changes made to f (0)

i in Section 4 to include a Maxwell
stress, and possibly a uniform body force as in (61), leave

∑
i �i �i �i f (0)

i unchanged, but
the mere presence of a body force like F = J × B in the macroscopic momentum equation
for ∂t0(�u) is enough to change the viscous stress by −�(Fu + uF), as indicated.
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